
Contents

1 Introduction 3

1.1 Creative Collaboration . 3
1.1.1 Computer Network Collaboration 4

1.2 Related Creative Development 4
1.2.1 NetPD . 4
1.2.2 Pure-Data and Data-Flow Programming 5
1.2.3 Linux . 5

2 Technical Description 6

2.1 Operating System . 6
2.2 Web interface . 6
2.3 Sound Synthesis Engine . 9
2.4 Encoding . 11
2.5 �Plug and Play� implementation 12
2.6 Administration . 12
2.7 Expansiveness . 13

3 Conclusion 13

3.1 Social Impact . 14

Appendices 17

A The Otherbot IRC Bot 17

A.1 Python Source Code . 17

B Apache 2 Con�guration �les 21

B.1 /etc/apache2/apache2.conf . 21
B.2 /etc/apache2/httpd.conf . 28
B.3 /etc/apache2/ports.conf . 28

C CGI:IRC Con�guration �les 28

C.1 /etc/cgiirc/cgiirc.con�g . 28
C.2 /etc/cgiirc/ipaccess . 29

D Icecast 2 Con�guration �les 29

D.1 /etc/icecast2/icecast.xml . 30

E IRC Server Con�guration Files 34

E.1 /etc/ircd/iauth.conf . 34
E.2 /etc/ircd/ircd.conf . 35
E.3 /etc/ircd/ircd.motd . 35

F Startup Script 35

F.1 /etc/rc.local . 36

1

G Block Diagrams 36

G.1 General Block Diagram . 37
G.2 Sound Synthesis Engine . 38

2

The Otherside

Web-based Collaborative Sound Synthesis

System

Ilias Anagnostopoulos

September 5, 2008

Abstract

The Otherside 1 is an advanced open-source multimedia system, de-

signed to run as a server application. It is essentially a sound synthesis

system that allows for the creative collaboration of a number of people

or machines over computer networks. Unlike most similar attempts to

create network-based audio applications, the Otherside does not require

any specialized audio software or massive amounts of computer process-

ing power. The audio processing is done on the server side and directed

to listeners using a simple Internet Radio protocol2. Any listener can

then choose to participate in the sound creation process by using a simple

web-browser-based chatroom where they can type in commands to con-

trol parameters of the sound or chat with other users of the Otherside,

thus giving more of a community feel to the process. It also allows more

advanced users to utilise their own advanced systems for network control

by following the simple steps on connecting custom devices and software

to the Otherside using well-known protocols such as OSC 3, IRC 4, HTTP
5 and raw network connections.

1 Introduction

1.1 Creative Collaboration

The Otherside Server provides a platform for the creative collaboration of any
number of people, regardless of their understanding of music, computer pro-
gramming or networking. It is platform-independent, meaning that it will run
properly on any operating system and any computer architecture. This makes
it easily accessible to a large number of people who can work together and even
communicate, during the course of their session with Otherside.

1The Otherside Server[Anagnostopoulos, 2008a]
2Streaming Audio
3Open Sound Control
4Internet Relay Chat
5Hyper-Text Transfer Protocol

3

People can create music together, from randomly changing values and creat-
ing random sonic events to carefully crafting their own software that will inter-
face with the Otherside like an additional musical instrument. It is an entrance
to the world of computer music for people who have no such previous experi-
ence. It can also serve as an advanced experimentation platform for users who
are already familiar with the protocols and principles involved. It is open and
accessible to several di�erent protocols and adheres to the open-source mental-
ity6, meaning that users can get involved to the extent of becoming developers
of the Otherside system.

1.1.1 Computer Network Collaboration

Computer Networks are nowadays dominating the world through the internet.
However, most of the well-established network applications are very simple and
are not particularly demanding in processing power and network bandwidth.
Digital Signal Processing is a complicated task that only recently became a
�household� application on personal computers. Careful planning and consider-
ation is required to overcome some of the di�culties posed by computer networks
and their use by artistic collaboration systems.

One of these problems is that network connections and especially the inter-
net often involve extremely long distances between two users, thus inevitably
data can not be transferred seamlessly. There is an evident latency issue that
is being treated di�erently by such project developers. Jeorg Stelkens discusses
this in a paper about his own network collaboration system7, proposing the
integration of latency in the creative process, as a unique characteristic of the
computer network as a medium. The Otherside does not attempt to overcome
or to cover-up latency, unlike most projects mentioned by Stelkens. It merely
accepts latency as a fact and uses the amount of users simultaneously transmit-
ting data to create a sonic situation where events can either be left to chance,
creating aleatory music8, or forcing a user to take the amount of latency into
consideration when crafting a sonic event in order to be able to predict the
outcome.

1.2 Related Creative Development

1.2.1 NetPD

An inspiring project, leading to the initial thoughts for creating the Otherside
was NetPD9. NetPD is based on Pure-Data10, but acts as a meeting point rather
than a sound generation engine. It allows users of Pure-Data to collaborate by
sharing control data online, while each one creates sound individually in any

6Open-Source Software make their source code available to the public, encouraging people
to study it and learn how it works

7peerSynth[Stelkens, 2003]
8Also know as chance music[Encyclopaedia Britannica, 2008]
9NetPD, Pure-Data based networking collaboration project[Haefeli, 2008].

10Pure-Data, data-�ow programming language[Puckette et al., 2008].

4

way they want. The idea of collaboration is common between NetPD and the
Otherside, but it seemed like an unnecessary limit, to keep it only between users
of Pure-Data, who would have to be comfortable with data-�ow programming
and networking. The Otherside attempts to break this boundary by giving the
chance to users to become involved as much as they please. NetPD also features
a chat facility within Pure-Data, for communication between participants. Oth-
erside is based on IRC, a well-known chat interface, but goes much further than
just using it for communication. It is worth noting that it is technically possible
to connect NetPD and the Otherside and create a collaboration between the
two projects.

1.2.2 Pure-Data and Data-Flow Programming

Pure-Data was created by Miller Puckette, as an open-source project, similar
to his Max11 program. It is a data-�ow programming language geared towards
audio/visual output and control. Pure-Data is a direct descendant of Max,
written in 198812 by Miller Puckette while he was in IRCAM13. David Zicarelli
together with Puckette later wrote MSP as an addition to Max, thus creating
Max/MSP, enabling audio-rate digital singal processing. Max was only capable
of control rate processing, as computers in 1988 were not fast enough to handle
audio-rate signal processing. Nowadays data-�ow programming is used widely
for audio applications, as it is a very powerful and versatile way of interfacing
with various control protocols. Computers nowadays have enough processing
power to support heavy digital signal processing applications and networking
speeds are high enough to be used creatively in interactive applications. This
makes data-�ow programming languages an interesting option for users who
want to explore the �eld of complex control in sound generation systems.

1.2.3 Linux

The Linux operating system was developed by Linus Torvalds in the early 90's
and is a very good example of the open-source mentality and free software. It
was based on Unix, an older computer operating system that was extremely
stable and advanced. Linux is now being actively developed by the open-source
community, which amounts to millions of developers from around the world. It
is now trusted by some as being superior to other operating systems, especially
for server applications and embedded systems. A Linux operating system14 is
the backbone of the Otherside, allowing all the computer software to interface
properly and serve the appropriate data through a network.

11Max, MSP, Jitter, by Miller Puckette [Puckette, 2008].
12According to Max Matthews in the foreword section of Miller Puckette's

book[Matthews, 2007]
13Institut de Recherche et Coordination Acoustique/Musique, Paris, France
14Ubuntu Linux[Canonical, Inc., 2008]

5

2 Technical Description

2.1 Operating System

The Otherside is based on open-source principles, being built on the Ubuntu
Linux 8.04 Server Edition15 operating system. The operating system was cho-
sen as it has proved to be very stable as a server system while being directly
compatible with all the audio software16 and techniques that were to be used. It
is also an operating system that is very open to customization, something that
was necessary to ensure high performance under the load of audio processing
and server applications.

The preparation of the computer system on which the Otherside was tested
started with the installation of the base Ubuntu 8.04 Server system, replacing
the Linux Server Kernel with the Linux 2.6.24 RT17 Kernel, which allows audio
processing to be done with Real-Time priority. Since audio processing is one of
the main functions of the Otherside, real-time implementation was an important
step towards high performance. To enable the audio to function on the Ubuntu
Server operating system the installation of ALSA 18 was also required.

2.2 Web interface

To achieve an extreme level of accessibility by users who have no interest in
turning their personal computer into an audio workstation, all functions of the
Otherside are accessible from a simple website interface.

The starting point is a website that is powered by the Apache 2 HTTP
server19, the most widely used HTTP server on the internet. This links to
a Streaming Audio Server20, an IRC Chat Interface, a help document simply
explaining the basics of the Otherside to the users and an email link for com-
munication with the administrator of the system. Apache 2 was chosen due to
the fact that all other HTTP servers under investigation21 were simply not as
advanced and reliable, something which is also evident by the widespread use
of the Apache on the internet.

The Streaming Audio Server is using the Icecast 2 Server22 to provide a
compressed audio stream produced by the Otherside to an audience with an in-
ternet connection and a media player23 on their computer. The Icecast 2 Server

15A very stable operating system geared towards Server applications
16The Linux sound devices, although not installed by default on Ubuntu Server systems,

are available from the supported repositories.
17An alternative Kernel, with Real-Time capabilities
18Advanced Linux Sound Architecture[Kysela et al., 2008]
19Apache 2 is a product of the Apache Software

Foundation[The Apache Software Foundation, 2008]
20Internet Radio
21Examples of other HTTP Servers that were considered instead of Apache include Math-

opd, micro-httpd, mini-httpd and nanoweb
22A product of the XIPH Open Source Community[The XIPH Open Source Community, 2008]
23Any software program that can reproduce digital media �les

6

receives a compressed audio stream, utilising MPEG Layer 324 compression, for-
warding it to a number of listeners over a computer network. This is based on
the established Internet Radio Station practice of using an encoder that streams
audio to a Streaming Audio Server to be forwarded to any number of listeners.
The di�erence here is that instead of encoding sound �les, the encoder is directly
encoding and streaming the computer-generated sound of the synthesis engine
that powers the Otherside. The link from the main website redirects a user to
the website interface of the Icecast 2 Server, which contains details about the
audio stream and a link for listening. Icecast 2 was chosen because it is a very
well-made open-source Streaming Server with a friendly user interface.

The control interface was a challenge as there were too many functions that
needed to be implemented in a simple and accessible interface. The choice of an
IRC Chat interface as the control interface was made as the nature of IRC al-
ready implemented a lot of the functions that were needed, without the need of
reinventing the wheel. Several di�erent alternatives for the IRC Server software
were tried, but most of the common servers25 proved to be unsuitable for the
kind of use that was about to be adopted. The IRC protocol26 includes several
functions geared towards huge IRC Server networks, which were a burden on
CPU power and con�guration time, therefore clearly not wanted in the Other-
side. The server software which was �nally used was the IRC-Net IRC 2 Server,
as it was very simple to con�gure, reliable and somewhat modular in design,
allowing the administrator to engage or disengage any modules needed for the
task. By default, it comes with the bare minimum necessary to function, which
is exactly what the Otherside requires.

Usually, an IRC Network has ways of registering nick-names27 and channels/chat-
rooms28. This is to allow frequent users to always use their own nickname while
prohibiting anybody else from using it, while there is also a service for leaving
messages to registered users that are currently o�ine29. These are collectively
known as IRC Services. The decision against using any IRC Services Provider
package came naturally at this stage, as the IRC Server used with the Other-
side is merely a control interface, therefore there is no need for registering a
nick-name or a chat-room.

An IRC Server also has the ability to connect to other IRC Servers, forming
IRC Networks. This was one of the most impressive features of the IRC protocol,
as it means that there is room for a great amount of evolution for the Otherside,
by connecting to other Othersides and forming a huge Otherside Network in a
very simple and e�cient way. This is also an easy way to get extensive load o� of
one server's central processing unit, by interfacing several computers to run the
Otherside System and sharing the load of processing in a clustered-computing

24Commonly refered to as mp3 due to the �.mp3� extension after the �lename on such �les
25Servers that were considered include the Undernet IRC Daemon, the Ratbox IRC Daemon

and the Hybrid IRC Daemon
26The IRC protocol refers to the speci�cations discussed in

RFC1459[Oikarinen and Reed, 1993] and its successor, RFC2813[Kalt, 2000]
27Known as NICKSERV
28Known as CHANSERV
29Known as MEMOSERV

7

fashion.
However, an IRC Server is only the back-end, requiring a Client program30

for user interaction. Most Client programs assume a certain level of understand-
ing from the user about the IRC Protocol. Investigation on this matter led to
the use of CGI:IRC, a very smart way of creating a web-browser interface for
the IRC Server, thus eliminating the requirement for an IRC Client program to
be installed on the client computer. CGI:IRC runs on the server machine and
creates a CGI-based web-page that can run on the majority of web-browsers,
allowing the user to connect to and use the IRC Server from this web-based
client.

This IRC interface allows a number of users to connect to a chat-room and
type in messages. The interaction between the users and the server was achieved
by using an IRC Infobot, a computer program that sits on an IRC Server, posing
as a human user, that replies to certain messages with prede�ned actions. These
messages usually contain information regarding the Server. This idea let to the
creation of an Infobot-like program that would listen for speci�c messages, but
instead of replying back to the user that sent the message, it would respond
by directing them to the Sound Synthesis Engine. After some investigation, it
became evident that there was nothing similar readily available. Thus came
the decision to create an original control-bot using a computer programming
language. I investigated C/C++ and Python31, deciding against C/C++ as it
was lacking some of the easy-to-use functions of Python for string formatting32.
By studying some existing Infobots33 I was able to see how they worked and
obtain ideas for implementing in my own code. The source code was loosely
based on the XoR bot skeleton as it had some interesting string formatting
examples. I ended up altering almost all the functions to make them more suited
to the speci�c needs of the project. The SimpleOSC Library34 for the Python
programming language enabled the reformatting and redirection of messages to
the Sound Synthesis Engine, using the extremely versatile OSC protocol35. The
program also uses the Sockets Library for TCP/UDP network connections to
connect to the IRC Server and to redirect all unde�ned messages sent by users
to a module on the Sound Synthesis Engine that treats it as raw ASCII36 data.
Finally, some of the existing Infobot funtions of the XoRbot were retained almost
intact, especially regarding the IRC Protocol channel functions37 and also to

30Common IRC client programs include mIRC for the Windows operating system and
bitchX for POSIX systems

31C/C++[Ritchie, 1993] and Python[Python Software Foundation, 2008] are widely used
low-level programming languages

32In computer programming, string formatting refers to the formatting of input text with
the aim of using either only a part of it, or bringing it to a desireable format for subsequent
use

33The XoR bot skeleton[ArchGh0ul, 2007] and the Redland Bot[Beckett, 2008]
34OSC Library for Python[Holth et al., 2008]
35Open Sound Control[Wright, 2002]
36American Standard Code for Information Interchange
37Although these are not needed at present, they may be necessary if there are any new

IRC Server-side modules activated

8

include a short help message and the basis for future MIDI38 implementation.
The users that log on to the chat-room see a user with the nick-name

â��Otherbotâ��, which is the bot that interfaces the IRC Server with the
Sound Synthesis Engine. The only thing they need to do to control the Sound
Synthesis Engine is send messages to the bot as if they were chatting to a friend,
from their web-browser window.

2.3 Sound Synthesis Engine

The Sound Synthesis Engine is based on a version of the Pure-Data data-�ow
programming software, called PD-extended. It is modular in design and consists
of a Polyphonic Additive Synthesis39 Module, a Wavetable Synthesis40 Module,
a Single Sideband Modulation41 Module, a Ring Modulation42 Module, a Comb
Filter43 Module, a Stereo Delay Line44 Module and a Speech Synthesis Module.
The Speech Synthesis Module is not based on PD-extended. Instead, it is based
on the Festival Speech Synthesis System45, developed by the Centre for Speech
Technology Research of the University of Edinburgh.

The Otherbot outputs three kinds of messages towards the Speech Synthesis
Engine. The easiest to explain is probably the Raw ASCII Data. When a
user types a message in the chatroom that is not recognised as a prede�ned
command, the bot establishes a UDP46 connection to port 9998 of the server and
redirects the full message. UDP Port 9998 is opened by a PD-extended object
listening for inbound connections, thus acting as a daemon program. The data is
received as ASCII integer values. These are treated as MIDI pitch values and are
directed to a polyphonic additive synthesis module, which creates the equivalent
of each MIDI message received, spatially panning it according to the number
of characters received in a message. The odd numbers are panned to the left
while the even ones are panned to the right. Therefore a message length of three
characters would have the �rst and third characters panned to the left while the
second character is panned to the right, after being converted from characters
to ASCII values representing MIDI pitch values and then synthesized to sound.
The sound is then directed to a Stereo Delay Module for further processing.
The spatialization in this module is evidently very simple, something which will
be recti�ed in future versions, by replacing the current algorithm with one that
does proportional panning. It currently acts as a mere demonstration of the
potential of the Otherside.

38Musical Instrument Digital Interface, presently not implemented, but it is part of the
plans for further development and compatibility

39Sound synthesis technique[Reid, 2000]
40Sound Synthesis Technique[Bristow-Johnson, 2008]
41Signal Processing technique, following the Hilbert Transform mathematical

module[MathWorks Team, 2008]
42Signal Processing Technique[Lehman, 2007]
43Subtractive Synthesis Technique[Smith III, 2007a]
44Time-based Signal Processing Technique[Smith III, 2007b]
45Speech Synthesis software, developed at the University of Edinburgh,

UK[Black et al., 1999]
46User Datagram Protocol

9

When a message typed in the chatroom matches a prede�ned command
recognised by the Otherbot, this is redirected as OSC data by establishing a
UDP connection to port 9997 of the server. UDP Port 9997 is opened by a PD-
extended object designed to receive OSC data and direct it to the equivalent
OSC path. These OSC paths direct data to the appropriate objects in the PD-
extended patch, where they control certain functions, such as the speed at which
the wavetable is read or the delay time and feedback.

The Wavetable Synthesis Module consists of two saved wavetables. One is
used to de�ne a waveform while the other is used to de�ne the speed at which the
waveform is being reproduced. When the speed is altered using the appropriate
OSC command, the waveforms are being read at di�erent speeds, so the whole
process can be sped up or slowed down according to taste.

The outputs of the Wavetable Synthesis Module are directed to two Single
Sideband Modulators. The �rst phase of the Single Sideband Modulation mod-
ule directs the signal through a �hilbert� object, which is basically two 4th order
�lters whose output is 90 degrees out of phase, approximating the mathemat-
ical Hilbert Transform47. The two out-of-phase outputs are then directed to
two signal multipliers that multiply a sawtooth wave and an inverted instance
of the same wave, with the two �ltered signals. This calculates the real and the
imaginary part of a complex wave. The real part is then subtracted from the
imaginary part and is directed to an output which is then directed to the Stereo
Delay Module.

The Speech Synthesis module is a bit more complicated since it does not
solely rely on PD-extended to complete its task. If a message in the chatroom is
preceded by the �talk� command, then anything following the command is being
written in a bu�er text �le. Once this is done, the bot calls a system function
that runs Text2Wave, a program that comes with the Festival Speech Synthesis
System that converts text �les to audio �les. The command tells Text2Wave to
use the bu�er text �le as an input �le and synthesize the contents of this �le to
sound, saving it as a PCM Wave �le. The PD-extended module that deals with
the Speech Synthesis implementation looks for this �le and plays it in a loop
until the bu�er text �le is altered. When this happens, the PCM Wave �le is
altered as well, so the next time the loop is started it starts playing the new �le.
The Speech Synthesis module sound output is then fed to a Ring Modulator.
The Ring Modulator module multiplies the sound with a carrier wave. The
frequency of the carrier wave is controllable by OSC, enabling a user to actively
control how the voice is e�ected during playback.

The output of the Ring Modulator module is directed to the Comb Filter
module. This creates four instances of the input signal and combines them,
applying slight delays to each instance. The level of each of the four instances
is changed sequentially according to a time variable. The time variable can be
altered via OSC as well. The output of the �lter is directed to the Stereo Delay
Module.

47As described in the help �le for the �hilbert� object in PD

10

The Stereo Delay Module is a delay line with a feedback loop48. It was based
on an earlier design of the author that also had a Graphical User Interface. This
was used on the �Weird Synthesizer for Weird People�49 project and was based
on a design by Jason Plumb50.

2.4 Encoding

The master signal output of the PD-extended patch is not directed to a �dac�51

object, since we are not interested in directing the sound to the sound-card of the
computer it runs on52. Instead, it is sent directly to the encoder, an �mp3cast�
object that is part of the �Unauthorized� library53. This encodes the sound to
the desired format. In this case, it uses the �LAME� library54 to encode the
audio into an MPEG Layer 3 stream and send it to the Icecast 2 Server, directly
from PD-extended.

Several di�erent ways of doing the conversion and streaming to the server
had been investigated, prior to deciding on the �nal solution. Methods that were
investigated included compiling Darkice55 with LAME library support to enable
it to encode using the MPEG Layer 3 format. However, Darkice required an
input by a program that was compatible with it. An early experiment was to use
�dac� object in PD-extended, together with Jack56, a signal routing program for
ALSA. Darkice had to be recompiled with support for Jack. The output of the
�dac� object was then disconnected from the sound-card input and was directed
to the input of Darkice instead. However, this set-up required two additional
programs to be compiled, installed and running on the server, Darkice and Jack
Daemon. It also required the Digital-to-Analogue conversion to be done within
PD-extended. It was clearly not an e�cient way of doing this and especially
Darkice proved to be a program that heavily used the CPU.

It is also interesting to note that the whole Sound Synthesis Engine and
Encoding section is totally server-based and does not have a Graphical User
Interface. PD-extended is started from a bash shell57 with real-time priority
and no GUI loaded. Since the encoder is part of the PD-extended patch, it does
not require any other external programs to be started.

48This means that the output is fed back to the input to create multiple delays
49Pure-Data based software synthesizer[Anagnostopoulos, 2008b]
50Jason Plumb maintains a website called Noisybox, hosting his own creative

projects[Plumb, 2007]
51Digital to Analogue Converter, the most common object to be found as the last part of a

data-�ow programming audio patch
52The audio signals remain digital on the server-side, since the sound is meant to be repro-

duced by the client-side application
53Pure-Data library by Yves Degoyon[Degoyon, 2008]
54Mp3 encoder[Cheng et al., 1988]
55An audio streamer, written by Akos Maroy
56Jack is a virtual patchbay for signal routing
57Bourne Again SHell

11

2.5 �Plug and Play� implementation

The Otherside Server is designed to be a totally â��hands-freeâ�� system. The
BIOS58 of the machine running the Otherside has been con�gured to boot-up
after power-loss. This means that as soon as the machine is plugged into mains
power, it boots up. As it is designed around the philosophy of a Linux Server,
it is head-less. This means that no monitor, keyboard or mouse is connected to
the computer. In order for it to be shut down in case it needs to be moved or
any other such case, it can be safely done by a simple press of the power button.
The BIOS is con�gured to have a four second delay on the power button for
a hard power-o�. But an ACPI59 daemon running on the computer ensures
that the momentary push of the power button is recorded as an event. When
this event is recorded, a safe and immediate shut-down script is called. The
computer can then safely be unplugged from the power. It will automatically
boot up again the next time it is plugged in.

All the necessary programs and server applications are started automatically
upon boot-up using appropriate scripts. The �watchdog� application ensures
everything remains up and running as long as the server is turned on. As soon
as the machine is plugged in, the server will be up and running within a matter
of minutes, with no further action necessary.

2.6 Administration

The administration of the Otherside Server is rarely required. However, in case
the necessity for updates arises, there are a few simple additions to the Otherside
System that make it an easy task to maintain.

An Open-SSH60 Server is running on the machine, thus enabling secure
remote administration over the internet. The SSH protocol allows encrypted
TCP/IP61 communication between two machines over a computer network.

The Subversion62 client is installed on the machine, allowing for fast and
simple version control of the applications. Together with â��apt-getâ��63,
this makes a core for remote updating of the software as and when needed. The
â��apt-getâ�� program installs, uninstalls or updates any packages on the
Ubuntu repositories. These include newer Kernel versions, newer versions of
libraries, and certain software updates such as the Apache 2 HTTP Server and
the IRC 2 Server. Subversion allows the retrieval of any changes made to the
software that has been developed and stored in an external Subversion Server,
not related to the o�cial Linux distribution. In case a bug is discovered that was
not there in the last known stable version, Subversion allows an administrator to
easily return to a previous version of the software. All this can be done through

58Basic Input/Output System[IBM, 1983]
59Advanced Con�guration and Power Interface[Hockin, 2007]
60Secure SHell[OpenBSD, 2008]
61Transmission Control Protocol/Internet Protocol
62Version Control System[Collins-Sussman et al., 2004]
63The default package manager system in Ubuntu Linux

12

the SSH protocol, from any computer in any part of the world as long as there
is an active internet connection.

With the software that is currently being used, updating can be done while
the server is running, minimising the down-time to the time needed for a com-
plete reboot. This is under �ve minutes, including the time needed to safely
shut-down and restart. This can even be done remotely, with no need to have
physical access to the actual hardware.

2.7 Expansiveness

The possibilities for expansion are virtually endless, owing to the modular design
principles the Otherside System is based on. It does not solely depend on the
developer, but also the community of the users and their imagination. The
Otherside is open to user-side additions and expansions.

3 Conclusion

The Otherside is unique in several ways, compared to other examples of network
collaboration systems. First and foremost, from a technical point of view, all
processing is done on the server side and the sound is transfered to the listeners
and users as an audio stream. This means that all users are listening to the same
sonic output. In contrast, NetPD 64 only provides control data, which is meant
to control a sound synthesis engine running on the client-side. This means that
each user will be creating a totally di�erent sound in a totally di�erent way.
A common problem associated with computer network collaboration systems is
the di�culty is synchronisation of the audio due to network latency, especially in
a situation where the collaboration might be between several users in the same
room. If each of the users is producing audio independently, it is technically
impossible65 to ever synchronize the output. However, in the Otherside system,
since all users are working towards a common sonic piece that is being created on
the server side, only one computer needs to act as the audio reproduction client
in each such setting. Therefore, in the collaboration situation where users are in
the same room, the audio only needs to be streamed to one computer, coming
out of one pair of loudspeakers. There are no synchronization problems, since
all the users are doing is transmitting control data to the server, which creates
one sonic artwork by synthesizing transmitted data in the order of arrival.

In the case of a network of Othersides, the servers all share the same user
control data as IRC servers share all data between them when networked. How-
ever, each Otherside Server runs its own sound synthesis engine so audio data
does not need to be transmitted between servers. All servers will create the ex-
act same version of the audio stream, since they have received the same control
data, and stream it independently. This is extremely useful as users can stream
the audio o� their local server, while being able to perceive the input of a user

64The NetPD Project[Haefeli, 2008]
65Due to the di�erent clock frequencies and network latency values

13

connected to a di�erent Otherside Server. This function makes the possibility
for a true global collaboration very realistic.

3.1 Social Impact

There is an evident social side to the Otherside system, since the use of an
IRC protocol allows users to easily communicate as they would in normal chat-
rooms. They are given the opportunity to start their own chat-rooms and form
â��teamsâ�� of users that cooperate for a desired sonic experiment. This can
easily grow into a network of Otherside Servers in di�erent parts of the world,
who could collaborate in creating sound or developing the Otherside system.
The IRC protocol is currently not being used at its full potential for chat services.
It can easily form into a full IRC chat interface, with services enabling users
to have a personalized identi�er/nickname and build permanent subject-speci�c
chatrooms. The Otherside presents the world with the opportunity to turn the
idea of computer network collaboration platforms into a global social network.

The prototype Otherside Server is currently up and running at the

University of She�eld Sound Studios, She�eld UK.

http://usss-otherside.shef.ac.uk

References

[Anagnostopoulos, 2008a] Anagnostopoulos, I. (2008a). Otherside server.
http://usss-otherside.shef.ac.uk/, Accessed on 01/09/2008.

[Anagnostopoulos, 2008b] Anagnostopoulos, I. (2008b). Weird synthesizer
for weird people. http://iforgotthem.tripod.com/ift.htm, Accessed on
01/09/2008.

[ArchGh0ul, 2007] ArchGh0ul (2007). Python irc bot skeleton.
http://www.rohitab.com/discuss/index.php?showtopic=24081, Accessed
on 01/09/2008.

[Beckett, 2008] Beckett, D. (2008). Julie, formerly known as redlandbot.
http://crschmidt.net/julie/, Accessed on 01/09/2008.

[Black et al., 1999] Black, A. W., Caley, R., and Taylor, P. (1999). The festi-
val speech synthesis system. http://�fe.speech.cs.cmu.edu/festival/manual-
1.4.1/festival-1.4.1.ps.gz, Accessed on 02/09/2008.

[Bristow-Johnson, 2008] Bristow-Johnson, R. (2008). Wavetable synthesis
101, a fundamental perspective. http://www.musicdsp.org/�les/Wavetable-
101.pdf, Accessed on 02/09/2008.

[Canonical, Inc., 2008] Canonical, Inc. (2008). Ubuntu linux.
http://www.ubuntu.com/, Accessed on 01/09/2008.

14

[Cheng et al., 1988] Cheng, M., Taylor, M., et al. (1988). Lame ain't an mp3
encoder. http://lame.sourceforge.net/index.php, Accessed on 02/09/2008.

[Collins-Sussman et al., 2004] Collins-Sussman, B., Fitzpatrick, B., and Pilato,
C. (2004). Version Control with Subversion. Sebastopol, California: O'Reily
Media, Inc., �rst edition.

[Degoyon, 2008] Degoyon, Y. (2008). Unauthorized pure data.
http://ydegoyon.free.fr/software.html, Accessed on 02/09/2008.

[Encyclopaedia Britannica, 2008] Encyclopaedia Britannica (2008). Aleatory
music. http://www.britannica.com/EBchecked/topic/13676/aleatory-music,
Accessed on 02/09/2008.

[Haefeli, 2008] Haefeli, R. (2008). Netpd. http://www.netpd.org/, Accessed on
01/09/2008.

[Hockin, 2007] Hockin, T. (2007). Acpi daemon. http://acpid.sourceforge.net/,
Accessed on 01/09/2008.

[Holth et al., 2008] Holth, D., McChesney, C., and the ixi soft-
ware group (2008). Simpleosc 0.2.5. http://www.ixi-
software.net/content/download/simpleosc0.2.5.zip, Accessed on 01/09/2008.

[IBM, 1983] IBM (1983). IBM Personal Computer Technical Reference manual,
�rst, revised march 1983 edition. page iii.

[Kalt, 2000] Kalt, C. (2000). The IRC RFC-2813.
http://www.irc.org/tech_docs/ircnet/rfc2813.txt, Accessed on 01/09/2008.

[Kysela et al., 2008] Kysela, J. et al. (2008). Advanced linux sound architec-
ture. http://www.alsa-project.org/main/index.php/Main_Page, Accessed on
01/09/2008.

[Leadbeater et al., 2008] Leadbeater, D. et al. (2008). Cgi:irc.
http://cgiirc.org/, Accessed on 01/09/2008.

[Lehman, 2007] Lehman, S. (2007). Ring modulation. http://www.harmony-
central.com/E�ects/Articles/Ring_Modulation/, Accessed on 02/09/2008.

[MathWorks Team, 2008] MathWorks Team (2008). Sin-
gle sideband modulation via the hilbert transform.
http://www.mathworks.com/products/signal/demos.html?
�le=/products/demos/shipping/signal/hilberttransformdemo.html, Ac-
cessed on 02/09/2008.

[Matthews, 2007] Matthews, M. (2007). The theory and techniques of elec-

tronic music, chapter Foreword. Singapore: World Scienti�c. http://www-
crca.ucsd.edu/ msp/techniques/latest/book-html/node5.html, Accessed on
01/09/2008.

15

[Oikarinen et al., 2008] Oikarinen, J. et al. (2008). Ircd-irc2 irc-net server.
http://packages.ubuntu.com/hardy/net/ircd-irc2/, Accessed on 01/09/2008.

[Oikarinen and Reed, 1993] Oikarinen, J. and Reed, D. (1993). The IRC

RFC-1459. http://www.irc.org/tech_docs/ircnet/rfc1459.txt, Accessed on
01/09/2008.

[OpenBSD, 2008] OpenBSD (2008). Open-ssh server.
http://www.openssh.com/, Accessed on 01/09/2008.

[Plumb, 2007] Plumb, J. (2007). Noisybox.
http://noisybox.net/computers/pd/, Accessed on 01/09/2008.

[Puckette, 2008] Puckette, M. (2008). Cycling 74.
http://www.cycling74.com/products/max5/, Accessed on 01/09/2008.

[Puckette et al., 2008] Puckette, M., Zmoelnig, I., and the PD Community
(2008). Pure-data. http://puredata.info/, Accessed on 01/09/2008.

[Python Software Foundation, 2008] Python Software Foundation (2008).
Python programming language. http://www.python.org/, Accessed on
01/09/2008.

[Reid, 2000] Reid, G. (2000). Part 14: An intro-
duction to additive synthesis. Sound on Sound.
http://www.soundonsound.com/sos/jun00/articles/synthsec.htm, Accessed
on 02/09/2008.

[Ritchie, 1993] Ritchie, D. M. (1993). The development of the c lan-
guage. In Bergin, Jr., T. J. and Gibson, Jr., R. G., editors, History

of Programming Languages-II. New York: ACM Press. http://cm.bell-
labs.com/cm/cs/who/dmr/chist.html, Accessed on 01/09/2008.

[Smith III, 2007a] Smith III, J. O. (2007a). Comb Fil-

ters. Stanford University, California, may 2008 edition.
http://ccrma.stanford.edu/ jos/pasp04/Comb_Filters.html, Accessed
on 02/09/2008.

[Smith III, 2007b] Smith III, J. O. (2007b). Delay

Lines. Stanford University, California, may 2008 edition.
http://ccrma.stanford.edu/ jos/pasp/Delay_Lines.html, Accessed on
02/09/2008.

[Stelkens, 2003] Stelkens, J. (2003). peersynth: A p2p multi-user software syn-
thesizer with new techniques for integrating latency in real time collaboration.
In Proceedings of the 2003 ICMC. Singapore: ICMA.

[The Apache Software Foundation, 2008] The Apache Software Foundation
(2008). Apache 2. http://httpd.apache.org/, Accessed on 01/09/2008.

16

[The XIPH Open Source Community, 2008] The XIPH Open Source Commu-
nity (2008). Icecast 2 server. http://www.icecast.org/, Accessed on
01/09/2008.

[Wright, 2002] Wright, M. (2002). The open sound control 1.0 speci�cation.
http://opensoundcontrol.org/spec-1_0, Accessed on 01/09/2008.

Appendices

A The Otherbot IRC Bot

The Otherbot was written in the Python programming language. It is responsi-
ble for interfacing the IRC Server with the Sound Synthesis Engine. It connects
to the IRC Server on startup, joins a pre-de�ned chatroom and waits there,
keeping the connection alive. Then it responds to a set of prede�ned commands
with prede�ned actions, while directing all data it does not understand to the
Raw Data module. The redirection of the data is done by establishing UDP
network connections to Pure-Data daemon objects.

A.1 Python Source Code

#!/usr/bin/python

OtherBot
IRC Bot for the man on the go...
Loosely based on XoRbot
Written by Jesus H. <ppsycho@mailcity.com>
<http://otherside.servebeer.com>
<http://iforgotthem.tripod.com>
Thanks to Dr. Dave Moore for the suggestions

Libraries
import socket
import string
import sys
import os
from array import array
import string
import osc

Con�guration
TRUE=1
FALSE=0

OSCPORT=9998 #for OSC

17

UDPPORT=9997 #for RAW DATA

SERVER="192.168.1.68"
PORT=6667
BOTNICK="OtherBot"
THECHAN="#OtherSide"

PASS="pouti0"
AUTHED=FALSE

OWNER="jesus"
rBUFF=""

BUFR = 'touch /home/access/bu�er.txt'
SPX = 'text2wave -f 44100 -o /home/access/bu�er.wav /home/access/bu�er.txt'

Functions
def parseARGS(args):
args = args.split('"')
args = args[1:] #remove the user info...
args.remove(' ')
args.remove('')
#print args
return args

def parse_talk(args):
args = args.split(':')
return args[2][5:]

def parse_raw(args):
args = args.split(':')
return args[2]

def parse_speak(args):
args = args.split(':')
return args[2][6:]

def parse_cmd_args(cmd, args):
args = args.split(':')
return args[2][len(cmd)+1:].split(' ')

def linetostring(line):
s = ""
for v in line:
s += v # + " " (no space needed now)
return s

18

Initialize connections
connection=socket.socket() #for TCP
connection.connect((SERVER, PORT))
connection.send("NICK %s\r\n" % BOTNICK) #IRC stu�
connection.send("USER%s %s bla :%s\r\n" % (BOTNICK, SERVER, BOT-

NICK))
connection.send("JOIN :%s\r\n" % THECHAN)
osc.init() #for OSC
udpsock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #for

UDP
udpsock.connect((SERVER, UDPPORT))
os.system(BUFR)

It's a dirty job, BOT somebody's gotta do it... (commands we're listening
for)

while 1:
try:
rBUFF=rBUFF+connection.recv(512)
temp=string.split(rBUFF, "\r\n")
rBUFF=temp.pop()
except:

connection.close()
sys.exit(1)

for line in temp:
line=string.rstrip(line)

rawLine = line
line=string.split(line)

WHO=line[0].split('!')
WHO=WHO[0].strip('1:')
if len(line) > 3:
WHERE = line[2]
try:
if WHERE <> BOTNICK:
WHERE=WHERE
else:
WHERE=WHO
THECMD = line[3][1:]

if THECMD == '+exit' and AUTHED == TRUE and WHO == OWNER:
connection.send("PRIVMSG %s :%c4,0 EXITING \r\n" % (WHERE,3))
connection.send("QUIT \r\n")
connection.close()
break
sys.exit(0)
elif THECMD== '+slap' and AUTHED==TRUE andWHO==OWNER:

19

args = parse_cmd_args('+slap',rawLine)
connection.send("PRIVMSG %s :%s slaps %s around a bit with a large trout

:D\r\n" % (WHERE, args[0], args[1]))
elif THECMD== '+speak' and AUTHED==TRUE andWHO==OWNER:
speak = parse_speak(rawLine)
args = parse_cmd_args('+speak',rawLine)
connection.send("PRIVMSG%s :%s\r\n" % (args[0], speak[len(args[0])+1:]))
elif THECMD== '+nick' and AUTHED==TRUE andWHO==OWNER:
args = parse_cmd_args('+nick',rawLine)
connection.send("NICK :%s\r\n" % (args[0]))
elif THECMD== '+join' and AUTHED==TRUE andWHO==OWNER:
args = parse_cmd_args('+join',rawLine)
connection.send("JOIN :%s\r\n" % (args[0]))
elif THECMD== '+part' and AUTHED==TRUE andWHO==OWNER:
args = parse_cmd_args('+part',rawLine)
connection.send("PART :%s\r\n" % (args[0]))
elif THECMD == '+login':
args = parse_cmd_args('+login',rawLine)
print args (was here for debug output)
if args[0]==PASS and AUTHED == FALSE:
AUTHED = TRUE
connection.send("PRIVMSG%s :%s LOGGED IN \r\n" % (WHERE,WHO))
print WHO + " is authed"
elif THECMD == 'osc':
args = parse_cmd_args('osc',rawLine)
osc.sendMsg(args[0], args[1:], SERVER, OSCPORT)
elif THECMD == 'talk':
msg = parse_talk(rawLine)
f = open('/home/access/bu�er.txt', 'w')
f.write(msg)
f.close()
os.system(SPX)
elif THECMD == 'midi':
connection.send("PRIVMSG %s :No Midi implementation in this version,

%s \r\n" % (WHERE, WHO))
elif THECMD == 'help':
connection.send("PRIVMSG %s :Pre�x messages with osc for OSC data,

midi for MIDI data, talk for speech synthesis implementation or anything else
for raw ASCII data, %s \r\n" % (WHERE, WHO))

else:
raw = parse_raw(rawLine)
udpsock.send(linetostring(raw))
except:
print "fuck! ... Unexpected error:", sys.exc_info()[0], sys.exc_info()[1]
---Uncomment above to see debug info---
print "Connected to IRC Server! \r\n"

20

The above works simply because an exception should occur only when
connecting to the server!

if(line[0]=="PING"):
connection.send("PONG %s\r\n" % line[1])
if line[1] == "KICK" and line[3] == BOTNICK:
connection.send("JOIN %s\r\n" % line[2])

B Apache 2 Con�guration �les

Based on the original con�guration �les that come with the Apache 2 Ubuntu
Package from the Ubuntu 8.04 repositories66.

B.1 /etc/apache2/apache2.conf

#
Based upon the NCSA server con�guration �les originally by Rob McCool.
#
This is the main Apache server con�guration �le. It contains the
con�guration directives that give the server its instructions.
See http://httpd.apache.org/docs/2.2/ for detailed information about
the directives.
#
Do NOT simply read the instructions in here without understanding
what they do. They're here only as hints or reminders. If you are unsure
consult the online docs. You have been warned.
#
The con�guration directives are grouped into three basic sections:
1. Directives that control the operation of the Apache server process as

a
whole (the 'global environment').
2. Directives that de�ne the parameters of the 'main' or 'default' server,
which responds to requests that aren't handled by a virtual host.
These directives also provide default values for the settings
of all virtual hosts.
3. Settings for virtual hosts, which allow Web requests to be sent to
di�erent IP addresses or hostnames and have them handled by the
same Apache server process.
#
Con�guration and log�le names: If the �lenames you specify for many
of the server's control �les begin with "/" (or "drive:/" for Win32), the
server will use that explicit path. If the �lenames do *not* begin
with "/", the value of ServerRoot is prepended -- so "/var/log/apache2/foo.log"
with ServerRoot set to "" will be interpreted by the

66Apache 2[The Apache Software Foundation, 2008] and Ubuntu Linux
[Canonical, Inc., 2008] as mentioned in the References.

21

server as "//var/log/apache2/foo.log".
#

Section 1: Global Environment
#
The directives in this section a�ect the overall operation of Apache,
such as the number of concurrent requests it can handle or where it
can �nd its con�guration �les.
#

#
ServerRoot: The top of the directory tree under which the server's
con�guration, error, and log �les are kept.
#
NOTE! If you intend to place this on an NFS (or otherwise network)
mounted �lesystem then please read the LockFile documentation (avail-

able
at <URL:http://httpd.apache.org/docs-2.1/mod/mpm_common.html#lock�le>);
you will save yourself a lot of trouble.
#
Do NOT add a slash at the end of the directory path.
#
ServerRoot "/etc/apache2"

#
The accept serialization lock �le MUST BE STORED ON A LOCAL

DISK.
#
#<IfModule !mpm_winnt.c>
#<IfModule !mpm_netware.c>
LockFile /var/lock/apache2/accept.lock
#</IfModule>
#</IfModule>

#
PidFile: The �le in which the server should record its process
identi�cation number when it starts.
#
PidFile /var/run/apache2.pid

#
Timeout: The number of seconds before receives and sends time out.
#
Timeout 300

#

22

KeepAlive: Whether or not to allow persistent connections (more than
one request per connection). Set to "O�" to deactivate.
#
KeepAlive On

#
MaxKeepAliveRequests: The maximum number of requests to allow
during a persistent connection. Set to 0 to allow an unlimited amount.
We recommend you leave this number high, for maximum performance.
#
MaxKeepAliveRequests 100

#
KeepAliveTimeout: Number of seconds to wait for the next request from

the
same client on the same connection. (was 15)
#
KeepAliveTimeout 5

##
Server-Pool Size Regulation (MPM speci�c)
##

prefork MPM
StartServers: number of server processes to start
MinSpareServers: minimum number of server processes which are kept

spare
MaxSpareServers: maximum number of server processes which are kept

spare
MaxClients: maximum number of server processes allowed to start
MaxRequestsPerChild: maximum number of requests a server process

serves
<IfModule mpm_prefork_module>

StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 150
MaxRequestsPerChild 0

</IfModule>

worker MPM
StartServers: initial number of server processes to start
MaxClients: maximum number of simultaneous client connections
MinSpareThreads: minimum number of worker threads which are kept

spare

23

MaxSpareThreads: maximum number of worker threads which are kept
spare

ThreadsPerChild: constant number of worker threads in each server pro-
cess

MaxRequestsPerChild: maximum number of requests a server process
serves

<IfModule mpm_worker_module>
StartServers 2
MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25
MaxRequestsPerChild 0

</IfModule>

User www-data
Group www-data

#
AccessFileName: The name of the �le to look for in each directory
for additional con�guration directives. See also the AllowOverride
directive.
#

AccessFileName .htaccess

#
The following lines prevent .htaccess and .htpasswd �les from being
viewed by Web clients.
#
<Files � "�\.ht">

Order allow,deny
Deny from all

</Files>

#
DefaultType is the default MIME type the server will use for a document
if it cannot otherwise determine one, such as from �lename extensions.
If your server contains mostly text or HTML documents, "text/plain" is
a good value. If most of your content is binary, such as applications
or images, you may want to use "application/octet-stream" instead to
keep browsers from trying to display binary �les as though they are
text.
#
DefaultType text/plain

24

#
HostnameLookups: Log the names of clients or just their IP addresses
e.g., www.apache.org (on) or 204.62.129.132 (o�).
The default is o� because it'd be overall better for the net if people
had to knowingly turn this feature on, since enabling it means that
each client request will result in AT LEAST one lookup request to the
nameserver.
#
HostnameLookups O�

ErrorLog: The location of the error log �le.
If you do not specify an ErrorLog directive within a <VirtualHost>
container, error messages relating to that virtual host will be
logged here. If you *do* de�ne an error log�le for a <VirtualHost>
container, that host's errors will be logged there and not here.
#
ErrorLog /var/log/apache2/error.log

#
LogLevel: Control the number of messages logged to the error_log.
Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
#
LogLevel warn

Include module con�guration:
Include /etc/apache2/mods-enabled/*.load
Include /etc/apache2/mods-enabled/*.conf

Include all the user con�gurations:
Include /etc/apache2/httpd.conf

Include ports listing
Include /etc/apache2/ports.conf

#
The following directives de�ne some format nicknames for use with
a CustomLog directive (see below).
#
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-

Agent}i\"" combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

#

25

ServerTokens
This directive con�gures what you return as the Server HTTP response
Header. The default is 'Full' which sends information about the OS-Type
and compiled in modules.
Set to one of: Full | OS | Minor | Minimal | Major | Prod
where Full conveys the most information, and Prod the least.
#
ServerTokens Minimal

#
Optionally add a line containing the server version and virtual host
name to server-generated pages (internal error documents, FTP directory
listings, mod_status and mod_info output etc., but not CGI generated
documents or custom error documents).
Set to "EMail" to also include a mailto: link to the ServerAdmin.
Set to one of: On | O� | EMail
#
ServerSignature On

#
Customizable error responses come in three �avors:
1) plain text 2) local redirects 3) external redirects
#
Some examples:
#ErrorDocument 500 "The server made a boo boo."
#ErrorDocument 404 /missing.html
#ErrorDocument 404 "/cgi-bin/missing_handler.pl"
#ErrorDocument 402 http://www.example.com/subscription_info.html
#

#
Putting this all together, we can internationalize error responses.
#
We use Alias to redirect any /error/HTTP_<error>.html.var response

to
our collection of by-error message multi-language collections. We use
includes to substitute the appropriate text.
#
You can modify the messages' appearance without changing any of the
default HTTP_<error>.html.var �les by adding the line:
#
Alias /error/include/ "/your/include/path/"
#
which allows you to create your own set of �les by starting with the

26

/usr/share/apache2/error/include/ �les and copying them to /your/include/path/,
even on a per-VirtualHost basis. The default include �les will display
your Apache version number and your ServerAdmin email address regard-

less
of the setting of ServerSignature.
#
The internationalized error documents require mod_alias, mod_include
and mod_negotiation. To activate them, uncomment the following 30

lines.

Alias /error/ "/usr/share/apache2/error/"
#
<Directory "/usr/share/apache2/error">
AllowOverride None
Options IncludesNoExec
AddOutputFilter Includes html
AddHandler type-map var
Order allow,deny
Allow from all
LanguagePriority en cs de es fr it nl sv pt-br ro
ForceLanguagePriority Prefer Fallback
</Directory>
#
ErrorDocument 400 /error/HTTP_BAD_REQUEST.html.var
ErrorDocument 401 /error/HTTP_UNAUTHORIZED.html.var
ErrorDocument 403 /error/HTTP_FORBIDDEN.html.var
ErrorDocument 404 /error/HTTP_NOT_FOUND.html.var
ErrorDocument 405 /error/HTTP_METHOD_NOT_ALLOWED.html.var
ErrorDocument 408 /error/HTTP_REQUEST_TIME_OUT.html.var
ErrorDocument 410 /error/HTTP_GONE.html.var
ErrorDocument 411 /error/HTTP_LENGTH_REQUIRED.html.var
ErrorDocument 412 /error/HTTP_PRECONDITION_FAILED.html.var
ErrorDocument 413 /error/HTTP_REQUEST_ENTITY_TOO_LARGE.html.var
ErrorDocument 414 /error/HTTP_REQUEST_URI_TOO_LARGE.html.var
ErrorDocument 415 /error/HTTP_UNSUPPORTED_MEDIA_TYPE.html.var
ErrorDocument 500 /error/HTTP_INTERNAL_SERVER_ERROR.html.var
ErrorDocument 501 /error/HTTP_NOT_IMPLEMENTED.html.var
ErrorDocument 502 /error/HTTP_BAD_GATEWAY.html.var
ErrorDocument 503 /error/HTTP_SERVICE_UNAVAILABLE.html.var
ErrorDocument 506 /error/HTTP_VARIANT_ALSO_VARIES.html.var

Include of directories ignores editors' and dpkg's backup �les,
see README.Debian for details.

27

Include generic snippets of statements
Include /etc/apache2/conf.d/

Include the virtual host con�gurations:
Include /etc/apache2/sites-enabled/

B.2 /etc/apache2/httpd.conf

B.3 /etc/apache2/ports.conf

Listen 80

<IfModule mod_ssl.c>
Listen 443

</IfModule>

C CGI:IRC Con�guration �les

Based on the original con�guration �les that come with the CGI:IRC Ubuntu
Package from the Ubuntu 8.04 repositories67.

C.1 /etc/cgiirc/cgiirc.con�g

CGI:IRC con�guration �le.
#
Check /usr/share/doc/cgiirc/examples/cgiirc.con�g.full.gz
for more details.
Take care about applying debian-speci�c settings like
`image_path' if you intend to just copy it!

default_server = otherside
default_port = 8079
default_channel = #OtherSide
default_name = AnotherSide User
default_nick=OtherSider???

#Appearance Settings (my own addition)

login basic = Nickname

login advanced = Nickname, Realname, Format, Character set

#What commands a user has access to (Safety) (my own addition)

67CGI:IRC[Leadbeater et al., 2008] and Ubuntu Linux [Canonical, Inc., 2008] as mentioned
in the References.

28

#access_command = msg me help join nick quit !

#Timeout Time (my own addition)

session_timeout = 18000

#Maximum number of users (my own addition)

max_users = 1000

Don't change these, they're speci�c to Debian:
Not working at the moment! (path = /usr/share/images/cgiirc)
image_path = /images/cgiirc

script_nph = nph-irc.cgi
script_form = client-perl.cgi
script_login = irc.cgi

ip_access_�le = ipaccess

C.2 /etc/cgiirc/ipaccess

CGI:IRC ipaccess �le. (For CGI:IRC versions from 0.5.3).
#
Check /usr/share/doc/cgiirc/examples/ipaccess.example
for more details.
#
Safe default con�guration: Access only for localnet.
#143.167.0.0/16

#Global access
..*.*

D Icecast 2 Con�guration �les

Based on the original con�guration �les that come with the Icecast 2 Ubuntu
Package from the Ubuntu 8.04 repositories68.

68Icecast 2[The XIPH Open Source Community, 2008] and Ubuntu Linux
[Canonical, Inc., 2008] as mentioned in the References.

29

D.1 /etc/icecast2/icecast.xml

<icecast>
<limits>

<clients>100</clients>
<sources>2</sources>
<threadpool>5</threadpool>
<queue-size>524288</queue-size>
<client-timeout>30</client-timeout>
<header-timeout>15</header-timeout>
<source-timeout>10</source-timeout>
<!-- If enabled, this will provide a burst of data when a client

�rst connects, thereby signi�cantly reducing the startup
time for listeners that do substantial bu�ering. However,
it also signi�cantly increases latency between the source
client and listening client. For low-latency setups, you
might want to disable this. -->

<burst-on-connect>1</burst-on-connect>
<!-- same as burst-on-connect, but this allows for being more

speci�c on how much to burst. Most people won't need to
change from the default 64k. Applies to all mountpoints -->

<burst-size>65535</burst-size>
</limits>

<authentication>
<!-- Sources log in with username 'source' -->
<source-password>password</source-password>
<!-- Relays log in username 'relay' -->
<relay-password>password</relay-password>

<!-- Admin logs in with the username given below -->
<admin-user>user</admin-user>
<admin-password>password</admin-password>

</authentication>

<!-- Uncomment this if you want directory listings -->
<!--
<directory>

<yp-url-timeout>15</yp-url-timeout>
<yp-url>http://dir.xiph.org/cgi-bin/yp-cgi</yp-url>

</directory>
-->

<!-- This is the hostname other people will use to connect to your server.
It a�ects mainly the urls generated by Icecast for playlists and yp
listings. -->

30

<hostname>http://otherside.servebeer.com</hostname>

<!-- You can use these two if you only want a single listener -->
<!--<port>8000</port> -->
<!--<bind-address>127.0.0.1</bind-address>-->

<!-- You may have multiple <listener> elements -->
<listen-socket>

<port>8000</port>
<!-- <bind-address>127.0.0.1</bind-address> -->

</listen-socket>
<!--
<listen-socket>

<port>8001</port>
</listen-socket>
-->

<!--<master-server>127.0.0.1</master-server>-->
<!--<master-server-port>8001</master-server-port>-->
<!--<master-update-interval>120</master-update-interval>-->
<!--<master-password>hackme</master-password>-->

<!-- setting this makes all relays on-demand unless overridden, this is
useful for master relays which do not have <relay> de�nitions here.
The default is 0 -->

<!--<relays-on-demand>1</relays-on-demand>-->

<!--
<relay>

<server>127.0.0.1</server>
<port>8001</port>
<mount>/example.ogg</mount>
<local-mount>/di�erent.ogg</local-mount>
<on-demand>0</on-demand>

<relay-shoutcast-metadata>0</relay-shoutcast-metadata>
</relay>
-->

<!-- Only de�ne a <mount> section if you want to use advanced options,
like alternative usernames or passwords

<mount>
<mount-name>/example-complex.ogg</mount-name>

<username>othersource</username>
<password>hackmemore</password>

31

<max-listeners>1</max-listeners>
<dump-�le>/tmp/dump-example1.ogg</dump-�le>
<burst-size>65536</burst-size>
<fallback-mount>/example2.ogg</fallback-mount>
<fallback-override>1</fallback-override>
<fallback-when-full>1</fallback-when-full>
<intro>/example_intro.ogg</intro>
<hidden>1</hidden>
<no-yp>1</no-yp>
<authentication type="htpasswd">

<option name="�lename" value="myauth"/>
<option name="allow_duplicate_users" value="0"/>

</authentication>
<on-connect>/home/icecast/bin/stream-start</on-connect>
<on-disconnect>/home/icecast/bin/stream-stop</on-disconnect>

</mount>

<mount>
<mount-name>/auth_example.ogg</mount-name>
<authentication type="url">
<option name="mount_add" value="http://myauthserver.net/notify_mount.php"/>
<option name="mount_remove" value="http://myauthserver.net/notify_mount.php"/>
<option name="listener_add" value="http://myauthserver.net/notify_listener.php"/>
<option name="listener_remove" value="http://myauthserver.net/notify_listener.php"/>
</authentication>

</mount>

-->

<�leserve>1</�leserve>

<!-- set the mountpoint for a shoutcast source to use, the default if not
speci�ed is /stream but you can change it here if an alternative is
wanted or an extension is required

<shoutcast-mount>/live.nsv</shoutcast-mount>
-->

<paths>
<!-- basedir is only used if chroot is enabled -->

<basedir>/usr/share/icecast2</basedir>

<!-- Note that if <chroot> is turned on below, these paths must both
be relative to the new root, not the original root -->

<logdir>/var/log/icecast2</logdir>
<webroot>/usr/share/icecast2/web</webroot>
<adminroot>/usr/share/icecast2/admin</adminroot>

32

<!-- <pid�le>/usr/share/icecast2/icecast.pid</pid�le> -->

<!-- Aliases: treat requests for 'source' path as being for 'dest' path
May be made speci�c to a port or bound address using the "port"
and "bind-address" attributes.

-->
<!--
<alias source="/foo" dest="/bar"/>
-->

<!-- Aliases: can also be used for simple redirections as well,
this example will redirect all requests for http://server:port/ to
the status page

-->
<alias source="/" dest="/status.xsl"/>

</paths>

<logging>
<accesslog>access.log</accesslog>
<errorlog>error.log</errorlog>
<!-- <playlistlog>playlist.log</playlistlog> -->

<loglevel>4</loglevel> <!-- 4 Debug, 3 Info, 2 Warn, 1 Error -->
<logsize>10000</logsize> <!-- Max size of a log�le -->
<!-- If logarchive is enabled (1), then when logsize is reached
the log�le will be moved to [error|access|playlist].log.DATESTAMP,
otherwise it will be moved to [error|access|playlist].log.old.
Default is non-archive mode (i.e. overwrite)

-->
<!-- <logarchive>1</logarchive> -->

</logging>

<security>
<chroot>0</chroot>

<changeowner>
<user>icecast2</user>
<group>nogroup</group>

</changeowner>

</security>
</icecast>

33

E IRC Server Con�guration Files

Based on the original con�guration �les that come with the IRCd IRC2 Ubuntu
Package from the Ubuntu 8.04 repositories69.

E.1 /etc/ircd/iauth.conf

If iauth timeouts, then reject user
notimeout

This makes the IRC server require that iauth performs the authentication
in order for a new user connection to be accepted
required

Perform ident lookups
module rfc931

Modules below this keyword will work in delayed execution mode.
This means client will be allowed to enter irc and if any module below
decides it shouldn't have, this client will be removed.
#delayed

Check and reject open SOCKS proxies
#module socks
port = 1080
option = reject,paranoid
reason = Denied access (insecure proxy found)

#module socks
port = 559
option = reject,paranoid
reason = Denied access (insecure proxy found)

Check and reject HTTP CONNECT proxies on port 8080
#module webproxy
port = 8080
option = reject
reason = Denied access (insecure proxy found)

Check and reject HTTP CONNECT proxies on port 3128
#module webproxy
port = 3128
option = reject,careful
reason = Denied access (insecure proxy found)

69IRC-Net IRC Daemon[Oikarinen et al., 2008] and Ubuntu Linux [Canonical, Inc., 2008]
as mentioned in the References.

34

E.2 /etc/ircd/ircd.conf

This is ircd's con�g-�le. Look at /usr/share/doc/ircd-irc2/example.conf
and /usr/share/doc/ircd-irc2/example.conf for more detailled information
and instructions

M-Line
M:OtherSide.Chat::Other Side Chat Server::826A

A-Line
A:Other Side:Modular Chat and Sonic Interface:Contact <ppsycho@mailcity.com>

for questions::OtherSideNet

O-Lines
O:*:EncryptedPassword:Username::10:A:

Y-Lines
Y:1:90::100:512000:5.5:100.100
Y:2:90::300:512000:5.5:250.250

I-Line
I:*:::0:1
I:127.0.0.1/32:::0:1

P-Line
P::::8079:

E.3 /etc/ircd/ircd.motd

[The Other Side]
|--|
| Welcome to the Other Side. The OtherSide.Chat IRC Server provides high

|
| quality chat and control interface services. You can either chat with |
| Other Siders or control a sophisticated sound synthesis engine which |
is streamed in real-time, or both. -Jesus-

F Startup Script

Based on the implementation by the Ubuntu operating system70.

70Ubuntu local startup script[Canonical, Inc., 2008].

35

F.1 /etc/rc.local

#!/bin/sh -e
#
rc.local
#
This script is executed at the end of each multiuser runlevel.
Make sure that the script will "exit 0" on success or any other
value on error.
#
In order to enable or disable this script just change the execution
bits.
#
By default this script does nothing.

su - access -c "pd -rt -nogui /home/access/otherside/otherside.pd &"

sleep 50

su - access -c "otherbot &"

sleep 10

exit 0

G Block Diagrams

The following Block Diagrams demonstrate the functions and modules of the
Otherside Server, the data �ow between them and what the interaction is be-
tween a client71 and the Otherside Server. The blocks either represent separate
programs, or modules within one large program. The arrows on the connectors
represent the signal �ow direction.

On the General Block Diagram72, the only Audio connections are from the
Sound Synthesis Engine to the Encoder, from the Encoder to the Icecast Server
and from the Icecast Server to the Client Media Player. Therefore, the only
network connection that is being used to transfer audio is the one from the
Icecast Server to the Client Media Player. All other connections are carrying
control data.

On the Sound Synthesis Engine Diagram73, a color coding scheme is in
e�ect, to make it easier to distinguish between the Audio connections and the
control data connections. No actual network connections exist within the Sound
Synthesis Engine as shown on the Diagram. All the connections are between
modules of Pure Data, Festival and the audio encoder.

71A client is any user of the Otherside Server.
72Appendix D.1
73Appendix D.2

36

G.1 General Block Diagram

37

G.2 Sound Synthesis Engine

The black connections represent control data, the red ones represent audio sig-
nals and the green one represents the �nal output.

38

	Introduction
	Creative Collaboration
	Computer Network Collaboration

	Related Creative Development
	NetPD
	Pure-Data and Data-Flow Programming
	Linux

	Technical Description
	Operating System
	Web interface
	Sound Synthesis Engine
	Encoding
	``Plug and Play'' implementation
	Administration
	Expansiveness

	Conclusion
	Social Impact

	Appendices
	The Otherbot IRC Bot
	Python Source Code

	Apache 2 Configuration files
	/etc/apache2/apache2.conf
	/etc/apache2/httpd.conf
	/etc/apache2/ports.conf

	CGI:IRC Configuration files
	/etc/cgiirc/cgiirc.config
	/etc/cgiirc/ipaccess

	Icecast 2 Configuration files
	/etc/icecast2/icecast.xml

	IRC Server Configuration Files
	/etc/ircd/iauth.conf
	/etc/ircd/ircd.conf
	/etc/ircd/ircd.motd

	Startup Script
	/etc/rc.local

	Block Diagrams
	General Block Diagram
	Sound Synthesis Engine

